
© Copyright Ian D. Romanick 2008

30-July-2008

VGP393 – Week 3

⇨ Agenda:
­ Finding Concurrency

­ Program decompositions
­ Dependency analysis
­ Design evaluation

­ Quiz #1
­ Assignment #1 due
­ Assignment #2 starts

© Copyright Ian D. Romanick 2008

30-July-2008

Finding Concurrency

⇨ Parallel programming is about finding and
exploiting concurrency

© Copyright Ian D. Romanick 2008

30-July-2008

Finding Concurrency

⇨ Parallel programming is about finding and
exploiting concurrency

Problem
Decomposition

Dependency
Analysis

Design
Evaluation

© Copyright Ian D. Romanick 2008

30-July-2008

Finding Concurrency

⇨ Parallel programming is about finding and
exploiting concurrency

Problem
Decomposition

Dependency
Analysis

Design
Evaluation

●Task Decomposition
●Data Decomposition
●Data Flow Decomposition

© Copyright Ian D. Romanick 2008

30-July-2008

Problem Decompositions

⇨ Must decompose the problem into elements that
can execute in parallel

⇨ Decomposition occurs along two primary axes
and one secondary axis

­ Task decomposition views the problem as a sequence
of tasks that can be executed concurrently

­ Data decomposition views the data problem as
separate chunks that can be evaluated concurrently

­ Data flow decomposition looks at how data flows
through the program as the problem is solved

© Copyright Ian D. Romanick 2008

30-July-2008

Driving Forces

⇨ Three forces drive all decompositions:
­ Flexibility – Is the design flexible enough to be

adapted to changes in requirements?
­ Usually changes in problem size or changes in target system

­ Efficiency – Does the design scale to at least the
number of processors in the target system?

­ Efficiency for one target system may come at the cost of
flexibility to other systems

­ Simplicity – Can the program design be understood,
debugged, and maintained?

­ Simplicity can come at a cost to efficiency

© Copyright Ian D. Romanick 2008

30-July-2008

Task Decomposition

⇨ Look at the problem as a collection of tasks
­ Look at the individual steps required to solve the

problem
­ Determine whether or not these steps are

independent

⇨ Find as many tasks as possible
­ Individual function calls
­ Iterations of a loop
­ Updates to portions of large data structures

© Copyright Ian D. Romanick 2008

30-July-2008

Task Decomposition

⇨ Evaluate the design...
­ Flexibility – Be flexible in the number of tasks

­ Parametrize the number and size of tasks at run-time

­ Efficiency – Two possibly opposing goals:
­ Tasks should be large enough to outweigh management

overhead
­ Should be enough tasks to keep all PEs busy all the time

­ Simplicity – Tasks should be defined in such a way
that debugging and maintenance are easy

­ Re-use code from sequential version of program

© Copyright Ian D. Romanick 2008

30-July-2008

Data Decomposition

⇨ Works well if...
­ Problem focuses on the manipulation of a large data

structure
­ The same or similar operations are performed on

different parts of the structure in independent ways

⇨ Focus on data structures that can be broken into
chunks that can be operated on concurrently

­ Concurrency can be found in array-based
computations by looking at updates to different
segments of the array

­ Concurrent updates on recursive data structures can
be performed on different subtrees, etc.

© Copyright Ian D. Romanick 2008

30-July-2008

Data Decomposition

⇨ Evaluate the design...
­ Flexibility – Be flexible in the size and number of data

chunks
­ Granularity knobs are parameters in the program that, at run-

time, control the size and number of data chunks
­ Granularity has a major impact on the overhead required to

manage dependencies between the chunks
­ Dependencies should scale at a slower rate than effort

required to compute each chunk

© Copyright Ian D. Romanick 2008

30-July-2008

Data Decomposition

⇨ Evaluate the design...
­ Efficiency – An efficient design should evenly map

work to UEs and not create too much additional
management work

­ Size of data chunks must be large enough to dominate the
amount of work required to manage the dependencies

­ Mapping chunks to UEs must also be considered. If the
mapping is poor, some PEs will have much more work to do
than others

­ Cache and memory access (NUMA) issues are important for
data that must be shared

© Copyright Ian D. Romanick 2008

30-July-2008

Data Decomposition

⇨ Evaluate the design...
­ Simplicity – Complex data mappings are difficult to

debug
­ Abstract data types to control the mapping of global data to

task-local data are useful

© Copyright Ian D. Romanick 2008

30-July-2008

Data Flow Decomposition

⇨ Look at how data flows from one task to another
­ Hybrid of task decomposition and data decomposition

⇨ Key feature is that one task cannot begin until it
receives data from another task

­ Producer-consumer problems are the classic example
­ Understand the nature of the dependency between

tasks
­ Seek to minimize the delay caused by the dependency

© Copyright Ian D. Romanick 2008

30-July-2008

Finding Concurrency

⇨ Parallel programming is about finding and
exploiting concurrency

Problem
Decomposition

Dependency
Analysis

Design
Evaluation

●Group Tasks
●Order Tasks
●Data Sharing

© Copyright Ian D. Romanick 2008

30-July-2008

Dependency Analysis

⇨ Sometimes task decomposition generates sets
of tasks that are entirely independent

­ These problems are often called embarrassingly
parallel

⇨ Dependencies are cases where the execution of
one task affects the execution of another

­ Data-sharing dependencies can occur when tasks
must share or exchange data during execution

­ Ordering constraints occur when tasks must execute
in a certain order

© Copyright Ian D. Romanick 2008

30-July-2008

Dependency Analysis

⇨ Several common ordering constraints:
­ Sequential (or data flow) dependency – One task

needs data generated by another task
­ Parallel dependency – A group of tasks must execute

at the same time
­ Independence – Tasks are truly independent and can

execute in any order

© Copyright Ian D. Romanick 2008

30-July-2008

Group Tasks

⇨ Grouping tasks simplifies dependency analysis
­ Dependencies between groups can be resolved once

per group instead of once per task in each group
­ This principle guides the grouping...pick groupings

that simplify the dependency analysis

© Copyright Ian D. Romanick 2008

30-July-2008

Group Tasks

⇨ Look at the original problem decomposition
­ High-level operations or loops are central to most task

decompositions
­ Tasks that correspond to high-level operations usually group

together
­ Tasks within a high-level operation that share a constrain

should remain as a separate group

⇨ Merge groups that share a common constraint
­ Larger groups make scheduling and load balancing

easier

© Copyright Ian D. Romanick 2008

30-July-2008

Group Tasks

⇨ Look at constraints between groups
­ If groups have a clear ordering or a clear data flow,

this is easy
­ However, independent task groups may share

constraints
­ It may be better to merge these groups

© Copyright Ian D. Romanick 2008

30-July-2008

Order Tasks

⇨ How must task groups be ordered to satisfy all
constraints?

⇨ Create a partial ordering of tasks by identifying
ordering constraints among groups

­ Ordering must be restrictive enough to satisfy all
constraints

­ Design is not correct otherwise!

­ No more restrictive than necessary
­ Additional constraints limit flexibility in load balancing

© Copyright Ian D. Romanick 2008

30-July-2008

Order Tasks

⇨ For each group, identify data required before that
group can execute

­ To identify the ordering constraint, find the task /
group that creates that data

⇨ Determine if external services impose addition
ordering constraints

­ Classic example is file I/O...different tasks may have
to write data to a file in a particular order

⇨ Also note when there is no constraint
­ Makes it more clear that potential interactions have

been examined

© Copyright Ian D. Romanick 2008

30-July-2008

Data Sharing

⇨ Determine how and when data is shared among
tasks

­ Data that is statically partitioned to particular tasks is
task-local

­ Data that cannot be strictly associated with a
particular task is shared

­ This is the source of most dependencies

­ Task may also need access to a portion of another
task's data

­ Usually boundary data that neighbors that tasks local data

© Copyright Ian D. Romanick 2008

30-July-2008

Data Sharing

⇨ Impacts both correctness and efficiency of the
program

­ Incorrect sharing can lead to some tasks getting incor-
rect data (reading before data is written)

­ Synchronization on global data can incur a lot of
overhead

­ Excessive communication can also incur a lot of
overhead

­ Condition variables, message queues, etc.

© Copyright Ian D. Romanick 2008

30-July-2008

Data Sharing

⇨ Identify data that is shared among tasks
­ Look back at the original program decomposition for

clues

⇨ Classify each shared data
­ Read-only – Data the is not modified does not need to

be protected
­ Effectively-local – Global data that is partitioned into

per-UE subsets needs limited, if any, protection
­ Read/write – Data that is both read and written arbi-

trarily needs the most synchronization

© Copyright Ian D. Romanick 2008

30-July-2008

Data Sharing

⇨ Special cases of read / write data:
­ Accumulate – Partial results are accumulated together

to form a final result
­ Typically each task has a copy of the data where it accumu-

lates partial results
­ When all tasks are complete, each local copy is accumulated

into the final result

­ Multiple-read / single-write – Data is read by multiple
tasks, but only updated by one

­ All readers need the initial value
­ The writer can modify the data arbitrarilly
­ Two copies of the data are required (constant initial and mod-

ifyable)

© Copyright Ian D. Romanick 2008

30-July-2008

Design Evaluation

⇨ Evaluate the design so far
­ Decide whether or not to return to earlier steps or

move on to the next step
­ The earlier design flaws are caught, the easier they

are to fix!

© Copyright Ian D. Romanick 2008

30-July-2008

Design Evaluation

⇨ Suitability for target platform
­ Does the design match the number of PEs available?
­ How is data shared among the PEs?

­ Different data partitionings fit SMP, NUMA, etc.

­ Are there sufficient UEs to mask I/O latency, etc?
­ Ratio of time spent doing useful work vs. overhead

­ Synchronization primitives (and available atomic operations)
vary from platform to platform

© Copyright Ian D. Romanick 2008

30-July-2008

Design Evaluation

⇨ Flexibility
­ Flexible in the number of tasks generated?
­ Is the definition of tasks independent of scheduling?
­ Is the size of data chunks parameterizable?
­ Does the algorithm handle boundary cases?

© Copyright Ian D. Romanick 2008

30-July-2008

Design Evaluation

⇨ Efficiency
­ Can the load be balanced amont PEs?
­ Is overhead minimized?

­ Thread creation?
­ Synchronization?
­ Message passing?
­ etc.

© Copyright Ian D. Romanick 2008

30-July-2008

Design Evaluation

⇨ Simplicity
­ Is the design as simple as possible without missing

necessary components?

© Copyright Ian D. Romanick 2008

30-July-2008

Design Evaluation

⇨ Other issues:
­ How regular are tasks and their dependencies?
­ Are interactions between tasks synchronous or asyn-

chronous?
­ Are tasks grouped in the best way?

© Copyright Ian D. Romanick 2008

30-July-2008

References

Much of this lecture comes from the following two
sources:
Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders;

"Patterns for Finding Concurrency for Parallel Application Programs";
Proceedings of the Seventh Pattern Languages of Programs Workshop
(PLoP 2000), 2000;
http://jerry.cs.uiuc.edu/~plop/plop2k/proceedings/proceedings.html

Beverly Sanders, “A Pattern Language for Parallel Programming”;
http://www.cise.ufl.edu/research/ParallelPatterns/sasplas.ppt

See also http://www.cise.ufl.edu/research/ParallelPatterns/

http://jerry.cs.uiuc.edu/~plop/plop2k/proceedings/proceedings.html
http://www.cise.ufl.edu/research/ParallelPatterns/sasplas.ppt
http://www.cise.ufl.edu/research/ParallelPatterns/

© Copyright Ian D. Romanick 2008

30-July-2008

Next week...

⇨ Algorithm structure
­ Task Parallelism
­ Divide and Conquer
­ etc.

⇨ Supporting Strcutures
­ SPMD
­ Master / worker
­ Loop Parallelism
­ etc.

© Copyright Ian D. Romanick 2008

30-July-2008

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

